Zur Kristallstruktur von FeJ₃O₉

MARTIN JANSEN

Institut für Anorganische und Analytische Chemie der Justus Liebig-Universität, 63 Gießen, Südanlage 6, Deutschland

Received June 3, 1975; in revised form August 2, 1975

Single crystals of FeI₃O₉ were obtained by oxidizing FeI₂ at 520°C and 500 atm oxygen pressure. The crystal structure has been determined and refined by full-matrix least-squares procedures using diffractometer data to a final *R*-value of 0.067; the space group is $P6_3-C_6^{6}$, a = 9.225 Å, c = 5.224 Å, c/a = 0.57. The structure consists of FeO₆-octahedra connected by iodine, each of which is coordinated by three oxygen (d(I-O): 1.89 and 1.90 Å for bridging O; 1.79 Å for terminal O). The Cr and β -Sc iodates have the same structure.

1. Einleitung

Eisen(III)-jodat(V) wurde erstmals von v. Endrédy erhalten, jedoch nicht näher charakterisiert (1). Kürzlich berichteten Nassau et al. über Eigenschaften, optische Parameter (2, 3) und magnetisches Verhalten (4) der wasserfreien sowie hydratisierten Jodate(V) der 3d Übergangsmetalle. Ferner werden Gitterkonstanten und Indizierungsvorschläge für Röntgenpulveraufnahmen angegeben (4).

Bei unseren Einkristalluntersuchungen an FeJ_3O_9 , die zur Aufklärung der Kristallstruktur führten, stellten wir bezüglich der Metrik der wasserfreien Jodate(V) von Fe^{3+} und Cr^{3+} Abweichungen von den bei (4) angegebenen Daten fest.

2. Darstellung der Einkristalle, Eigenschaften

Zur Darstellung wurde FeJ_2 [aus Eisenpulver p.a. und Jod, doppelt sublimiert (beides Fa. Merck, Darmstadt) nach M. Guichard (5)] unter 500 atm O₂-Druck in einem Stahlautoklaven (Fa. Hofer, Mühlheim) auf 520°C erhitzt; die Reaktionszeit betrug 3 Tage. Bei dieser Reaktionsführung setzt sich FeJ₂ teils zu γ -Fe₂O₃, teils zu einkristallinem FeJ₃O₉ um. Die lindgrünen, nadelförmigen Einkristalle (max Länge: 1.2 mm, max ϕ : 0.2 mm) sind weitgehend unempfindlich gegenüber atmosphärischen Einflüssen: nach 48-stündiger Lagerung an der Luft sind noch keine Zersetzungs- oder Verwitterungserscheinungen erkennbar.

3. Strukturaufklärung

Aus Weißenberg- und Präzessionsaufnahmen eines nach der Nadelachse [00.1] justierten Kristalls bestimmte man vorläufige Gitterkonstanten, Lauesymmetrie und gesetzmäßige Auslöschungen: mögliche Raumgruppen sind $P6_3-C_6^6$ und $P6_322-D_6^6$; a =9.19, c = 5.22 Å, c/a = 0.57; Molvolumen = 116.0 cm³; $d_{r\tilde{a}} = 5.01$ g. cm⁻³; Z = 2.

Die Datensammlung erfolgte mit Hilfe des off-line Zweikreisdiffraktometers Stadi 2 der Fa. Stoe, Darmstadt (ω -scan, Mo K_z -Strahlung, Graphitmonochromator). Es wurden drei symmetrieäquivalente Reflexgruppen vermessen, aus denen nach Mittelung der Nettointensitäten und Durchführung der PL-Korrektur ein 141 unabhängige Reflexe umfassender Datensatzentstand. Auf Absorption wurde nicht korrigiert.

Die Positionen der Jodatome entnahm man der 3-dimensionalen Pattersonsynthese; wiederholte Differenzfouriersynthesen ließen zunächst die Eisenlagen und schließlich auch

MARTIN JANSEN

TABELLE I

Orts- und Temperaturparameter von FeJ₃O₉, Raumgruppe $P6_3$, Standardabweichungen in Klammern

	Punktlage	x	У	Z	В
Fe	26	1/3	2/3	0.6387(32)	1.11(23)
J	6 <i>c</i>	0.3128(3)	0.9779(3)	0.0	0.04(5)
O 1	6 <i>c</i>	0.8240(35)	0.0435(34)	0.2414(81)	1.31(56)
O ₂	6 <i>c</i>	0.5785(39)	0.1266(36)	0.3444(85)	0.62(52)
O_3	6 <i>c</i>	0.1967(36)	0.7156(38)	0.3994(64)	0.54(51)

TABELLE II

Berechnete (F_c) und Beobachtete (F_o) Strukturfaktoren

h k l	FO	FC	h k l	FO	FC	h k l	FO	FC	h k l	FO	FC
090	93.8	89.4	250	8.6	11.0	4 4 1	98.1	92.2	072	18.7	27.3
810	54.8	55.5	260	70.8	71.4	4 1 1	152.3	157.0	612	30.7	31.6
820	0.0	9.3	230	72.6	73.1	4 2 1	38.7	42.7	622	0.0	10.3
080	63.4	63.7	240	67.0	66.0	0 41	23.0	21.3	062	125.1	122.1
730	39.8	42.5	210	64.5	63.9	371	53.0	51.5	532	60.8	48.7
710	47.3	43.6	220	97.6	95.3	3 51	92.5	90.3	512	57.1	52.6
720	95.3	96.9	020	39.7	39.4	361	0.0	8.5	522	66,3	61.8
070	8.7	12.5	170	48.3	43.5	3 3 1	0.0	10.0	052	42.5	45.7
630	114.0	110.5	180	38.4	35.9	3 4 1	59,7	61.0	432	62.0	63.6
640	11.9	23.8	150	41.8	45.1	3 1 1	64.4	65.9	442	62.7	61.6
610	55.9	57.2	160	70.6	70.8	3 2 1	79.4	76.8	412	91.3	90.9
620	0.0	2.8	130	71.2	70.5	0 3 1	57.3	57.2	422	84.7	85.4
060	157.9	159.9	140	33.2	24.1	271	64.1	67.6	042	28.8	27.6
550	6.1	20.7	110	85.1	76.0	2 51	115.3	112.0	352	0.0	19.8
530	52.2	49.2	120	0.0	4.5	2 61	50.2	49.7	332	135.0	135.6
540	67.3	58.3	010	21 5	20.3	2 31	56.0	53.9	342	12.6	10.1
510	63.8	58.1	811	14.8	18.8	2 4 1	46.3	44.2	312	33.0	32.2
520	60.8	53.0	081	88.1	88.0	2 1 1	41.2	43.7	322	28.1	25.0
050	38.0	43.0	731	0.0	14.7	2 2 1	153.4	161.4	032	178.4	201.2
450	55.6	60.7	711	82.0	77.0	0 2 1	53.9	52.8	252	66.6	61.3
460	72.4	78.4	721	10.4	14.9	171	86.3	80.7	262	45.3	42.5
430	33.4	31.0	071	45.1	41.9	1 8 1	46.8	40.9	232	51.6	49.7
440	51.6	42.0	631	15.5	7.5	151	62.2	56.7	242	61.0	54.9
410	79.7	73.0	641	70.5	73.5	1 61	0.0	13.8	212	33.4	31.2
420	59.3	54.2	611	55.5	59.1	1 3 1	29.8	31.5	222	102.8	99.7
040	21.0	21.0	621	66.2	58.6	1 4 1	142.5	140.3	022	29.1	28.2
370	0.0	24.8	061	19.6	13.9	1 11	180.4	221.2	152	31.1	28.9
350	46.6	42.7	551	63.6	67.7	1 2 1	42.3	42.3	162	82.4	82.9
360	107.4	99.6	531	77.1	80.1	0 1 1	35.5	36.7	132	56.8	58,4
330	187.8	202.6	541	37.3	33.0	0 -1 1	35.7	36.7	142	101.1	103.8
340	41.7	40.3	511	0.0	11.2	0 3 3	20.6	16.8	112	111.1	116.9
310	44.2	44.4	521	127.4	123.1	2 1 3	49.7	50,5	122	51.1	51.8
320	0.0	15.0	051	93.7	90.5	0 2 3	27.4	23.5	012	3.5	11.2
030	182.4	215.6	451	27.8	23.5	1 1 3	151.0	162.1			
270	56.6	52.2	461	0.0	12.2	1 2 3	26.2	22.3			
280	0.0	14.0	431	30.7	26.2	0 1 3	29.1	28.9			

ABBILDUNG 1. Projektion der Kristallstruktur von FeJ₃O₉ längs [00.1].

alle Sauerstoffteilchen zweifelsfrei erkennen. Anschließend wurden die Orts- und isotropen Temperaturparameter nach der Methode der kleinsten Fehlerquadrate bis zu einem konventionellen *R*-Wert von 6.76% verfeinert. Bezüglich Endparameter und Vergleich der beobachteten und berechneten Strukturfaktoren vgl. Tabelle I bzw. II.

4. Beschreibung der Kristallstruktur und Diskussion

FeJ₃O₉ kristallisiert in einem bislang unbekannten Strukturtyp. Wie aus Tabelle III ersichtlich, betätigt Fe3+ gegenüber Sauerstoff die Koordinationszahl (C.N.) 6; die Koordinationspolyeder sind verzerrte Oktaeder mit C₃-Symmetrie (Δ aus O bei z = 0.3444um 50.3° (statt 60°) gegenüber Δ aus O bei z = 0.8994 verdreht). Die FeO₆-Oktaeder können insofern als "isoliert" bezeichnet werden, als sie keine gemeinsamen Flächen, Kanten oder Ecken besitzen. Die Verknüpfung dieser Baugruppen zu einem dreidimensionalen Verband vermitteln die J^{5+} Teilchen, die jeweils von zwei Sauerstoffteilchen benachbarter Oktaeder und einem, nur dem betreffenden Jod(V)-ion zugehörigen O umgeben sind; es liegen also zwei funktional unterschiedliche Sauerstoffteilchen vor: O1 und O2 mit C.N. 2 und O₃ mit C.N. 1. Erwartungsgemäß sind die Abstände der verbrückenden O zu Jod $[d(O_2-J)$ und $d(O_3-J)$] mit 1.89 bzw. 1.90 Å deutlich länger als $d(O_1-J)(1.79 \text{ Å})$; die Abweichungen von der praktisch ideal gebauten JO₃-Gruppe in NaJO₃ (6) [d(J - O) =1.82 (3x) und $\angle O$ -J-O = 99°] auch bezüglich der Winkel sind beträchtlich (vergl. Tabelle III). Für die Abstände Fe-O wurden mit 1.98 Å Werte bestimmt, die mit 1.995 Å, der Summe der Ionenradien (7) von Fe³⁺ (highspin, C.N. = 6) und O²⁻ (C.N. = 2), gut übereinstimmen.

Anhand der Abbildung 1 erkennt man, daß formal betrachtet noch weitere 4 "Oktaederlücken" in der Elementarzelle vorhanden sind,

TABELLE III

Abstände und Winkel in FeJ₃O₉ bis 3.0 Å; Maximale Standardabweichung: 0.03 (Abstände), 1.2° (Winkel)

Fe- O_2 : 1.98 (3x)	O ₂ –J : 1.89
$-O_3$: 1.98 (3x)	-Fe: 1.98
J-O ₁ : 1.79	-O ₃ : 2.69
-O ₂ : 1.89	-O3: 2.76
-O ₃ : 1.90	$-O_1: 2.78$
-O ₁ : 2.69	–J : 2.79
-O ₂ : 2.79	$-O_2: 2.87(2x)$
-O ₃ : 2.96	–O ₃ : 2.97
$O_1 - J : 1.79$	O ₃ -J : 1.90
-J : 2.69	-Fe: 1.98
-O ₃ : 2.70	$-O_3$: 2.66 (2x)
-O ₂ : 2.78	-O ₂ : 2.69
-O ₃ : 2.93	$-O_1: 2.70$
O ₁ J-O ₂ : 98.3°	-O ₂ : 2.76
O ₁ -J-O ₃ : 93.7	-O ₁ : 2.93
O ₂ -J-O ₃ : 93.6°	−J : 2.96
	-O ₂ : 2.97

	1	FeJ ₃ O,				0	CrJ_3O_9				β	-ScJ ₃ O ₆		
h k l	$d_{o}(\mathbf{\hat{A}})$	d,(Å)	I_o	$I_c.K$	h k 1	$d_o(\check{\mathbf{A}})$	$d_c(Å)$	l_{a}	$I_c.K$	h k 1	$d_o(Å)$	$d_c(Å)$		$I_c.K$
100		7.99	i I	0.3	100	- - -	7.863		0.4	100	1	8.27		0.1
110	4.60	4.61	-	2.2	110	4.505	4.539	5	4.7	110	4.75	4.77	s	1.5
1	4.50		1	ļ	101	I	4.352	[0.9	101]	4.35		0.2
101	[4.37		0.5	200	ł	3.932	1	0.5	200	ļ	4.13	ł	0.2
200		3.99		0.3	111	3,401	3,427	10	27.1	111	3.48	3.49	st	10.0
111	3.45	3.46	10	18.0	201	3.134	3.141	ы	1.2	201	3.21	3.21	SS	0.4
201	3.16	3.17	1	0.9	120	C 70 C	2.972)	ſ	0.1	120)	C1 C	3.13		6.0
210		3.02		0.3	210)	706.7	2.972	V	0.7	210)	2.12	3.13)	\$2	c.0
120	1	3.02	ļ	0.0	300)	0126	2.621)	0	7.1	300	2.75	2.76	Ε	2.5
300	2.66	2.66	4	4.9	002)	410.7	2.613 /	0	1.9	211)	22.0	2.67)	ļ	0.2
2117		2.61)		0.2	121	202 6	2.583	ſ	0.5	121)	7.00	2.67]	\$\$	0.1
121	2.61	2.61 }	C 1	0.3	211	CQC.7	2.583]	ч	0.4	$0 \ 0 \ 2$	2.55	2.56	SS	0.7
002		2.61		1.2	102	ł	2.480	l	0.0	102	ļ	2.44]	0.0
102	l	2.48		0.0	301	2.341	2.342	2	0.7	301	2.43	2.43	SS	0.2

Auswertung von Pulverdatem, Beobachtete Daten nach (3) und (4)

TABELLE IV

MARTIN JANSEN

0.4	0.1	0.2	1.0	0.1	1.7	0.3	0.0	0,0	0.2	0.0	0.0	0.1	2.1	I	0.2	0.1	0.4	0.0	0.1	0.9	0.8		
SS	33	66	s	1	Ξ	6	2	[SS			Е		SS	6	22	SS		8	1115			
2.39	2.29	2.29	2.25	2.17)	2.16)	2.09	2.09	2.07	1.98	1.92	(68.1	1.89 }	1.87	ł	1.78 (1.78	1.74	1.71)	1.71	1.70 [1.70)		
2.39	066	67.7	2.25	r r	7.17		60.2	ł	1.98	ł		1.88		1.81	100	1./8	1.75		Ê.	1./0			
220	3101	130)	112	202	221)	311)	131)	400	212	401	320)	230	302		321]	231)	222	312)	132	411	141	.	
1.1	2.9	0.1	0.7	0.1	4.8	0.1	0.8	0.0	0.1	0.4	5.8	0.1	0.2	0.4	0.1	1.1	0.6	0.3					
2	0	ſ	-1	ļ	×	,	7	l		-	6	l	ļ		٣		ſ	4					
2.269 }	2.264	2.181)	2.181	2.176	2.082	2.013	2.013)	1.966	1.962)	1.962	1.851	1.840	1.804	1.716)	1.716	1.714	1.708	1.708					
7766	7.200		2.183	ļ	2.083	2010	C10.2	l		796.1	1.851	l	į		1.717		001 1	1./08					
220)	112/	3101	130)	202	221	1311	311)	400	212	122)	302	401	320	410)	140	222	321)	231					
0.8	0.9	1.9	0.0	0.7	0.0	3.4	0.6	0.1	0.0	0.1	0.9	0.0	3.9	0.0	0.1	0.4	0.3	0.8	0.0	0.1	1.7	1.3	1.7
6 1	-	6 1	-	į	I	5	ſ	~1	ļ	ć	7		9	1			2		ļ	-	v	ŋ	m
2.37	2.31	2.27	2.22	2.22	2.19	2.11	2.04	2.04 (2.00	1.976)	1.976	1.866	1.865	1.833	1.743	1.730)	1.730	1.729	1.701	1.690	1.654 (1.654)	1.629
2.37	2.31	2.27	1	ł	ł	2.11		2.04	ļ	110.	c/ 6. I		1.866	1			1.729		ł	ł	1 654	+00.1	1.630
301	220	112	310	130	202	221	3111	131	400	212)	122)	4 0 I	302	320	410	321)	231	222	103	312	411)	141)	113

TABELLE V Gitterkonstanten von FeJ₃O₉, CrJ₃O₉, und β -ScJ₃O₉

	a (Å)	c (Å)	c/a
FeJ ₃ O ₉	9.225 ± 0.005	5.224 ± 0.003	0.57
CrJ_3O_9 β -ScJ_3O_9	9.080 ± 0.007 9.548 ± 0.008	5.226 ± 0.003 5.112 ± 0.004	0.58 0.54

nämlich bei $0, 0, 0.49, 0, 0, 0.99, \frac{1}{3}, \frac{2}{3}, 0.13$ und $\frac{2}{3}, \frac{1}{3}, 0.63$; unter Vermeidung flächenverknüpfter MO_6 -Gruppen kann von diesen möglichen Kationenpositionen nur eineentweder 0, 0, 0.49 oder 0, 0, 0.99-besetzt werden.

Für den Madelunganteil der Gitterenergie (MAPLE) (8, 9) berechnet man 14 770 kcal/ mole, dieser Wert weicht nur um 0.9% von der Summe der Madelungenergien der binären Komponenten J_2O_5 (10) and γ -Fe₂O₃ (11) ab.

5. Weitere Verbindungen im FeJ_3O_9 -Typ

Die von Nassau et al. angegebenen *d*-Werte und beobachteten Intensitäten von FeJ₃O₉, CrJ₃O₉, und β -ScJ₃O₉ lassen sich widerspruchsfrei mit Hilfe unserer Gitterkonstanten und Lageparameter interpretieren (vgl. Tabelle IV). Die durch Ausgleichsrechnung ermittelten Gitterkonstanten sind in Tabelle V zusammengestellt; sie weichen bezüglich der a-Achse beträchtlich (ca um den Faktor $\sqrt{3/2}$) von den bei (4) zitierten Werten ab.

Obwohl aus den gemessenen Pulverdaten der wasserfreien Jodate(V) der zweiwertigen 3d Elemente klar hervorgeht, daß ein prinzipiell ähnlicher Aufbau vorliegt, kann allein auf Grund von Pulverintensitäten nicht sicher entschieden werden, welche der drei möglichen Oktaederlücken durch das bei einem Zellinhalt entsprechend $M_3J_6O_{18}$ zusätzlich unterzubringende M^{2+} besetzt wird.

Die Deutsche Forschungsgemeinschaft unterstützte die Untersuchungen mit Sachmitteln.

Herrn Prof. Dr. R. Hoppe danke ich für die Förderung dieser Arbeit. Mein Dank gilt ferner Herrn W. Scheld für tatkräftige Mitarbeit bei den Hochdruckexperimenten.

Literaturverzeichnis

- 1. A. VON ENDRÉDY, Z. Anorg. Allg. Chem. 217, 53 (1934).
- K. NASSAU, J. W. SHIEVER, UND B. E. PRESCOTT, J. Solid State Chem. 7, 186 (1973).
- 3. K. NASSAU UND J. W. SHIEVER, J. Solid State Chem. 13, 368 (1975).
- 4. S. C. Abrahams, R. C. Sherwood, J. L. Bernstein, und K. Nassau, J. Solid State Chem. 7, 205 (1973).
- M. GUICHARD, C.R. hedb. Séances Acad. Sci. 145, 807 (1907).
- 6. C. H. MACGILLAVRY UND P. VAN ECK, *Rec. Trav. Chim.* 62, 729 (1943).
- R. D. SHANNON UND C. T. PREWITT, Acta Crystallogr. B25, 925 (1969).
- 8. R. HOPPE, Angew. Chem. 82, 7 (1970) sowie Angew. Chem. int. Ed. 9, 25 (1970).
- 9. R. HOPPE, Advances in Fluorine Chem. (London) 6, 387 (1970).
- K. SELTE UND A. KJEKSHUS, Acta Chem. Scand. 22, 3309 (1968).
- 11. R. W. G. WYCKHOFF, "Crystal Structures," Vol. 2, Interscience Publishers, New York (1965).